Evaluate (2*3-(2*5-4))+((18/3+1)(5*4-7*2)-(3*5-7))/((5*2-4)(15-3*4)-((5+2)*3-(3+2)))

Math
(2⋅3-(2⋅5-4))+(183+1)(5⋅4-7⋅2)-(3⋅5-7)(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Multiply 5 by 4.
2⋅3-(2⋅5-4)+(183+1)(20-7⋅2)-(3⋅5-7)(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Multiply -7 by 2.
2⋅3-(2⋅5-4)+(183+1)(20-14)-(3⋅5-7)(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Multiply 3 by 5.
2⋅3-(2⋅5-4)+(183+1)(20-14)-(15-7)(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Write 1 as a fraction with a common denominator.
2⋅3-(2⋅5-4)+(183+33)(20-14)-(15-7)(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Combine the numerators over the common denominator.
2⋅3-(2⋅5-4)+18+33(20-14)-(15-7)(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Add 18 and 3.
2⋅3-(2⋅5-4)+213(20-14)-(15-7)(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Subtract 14 from 20.
2⋅3-(2⋅5-4)+213⋅6-(15-7)(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Subtract 7 from 15.
2⋅3-(2⋅5-4)+213⋅6-1⋅8(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Multiply -1 by 8.
2⋅3-(2⋅5-4)+213⋅6-8(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Find the common denominator.
Tap for more steps…
Write 2⋅3 as a fraction with denominator 1.
2⋅31-(2⋅5-4)+213⋅6-8(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Multiply 2⋅31 by (5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)).
2⋅31⋅(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))-(2⋅5-4)+213⋅6-8(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Multiply 2⋅31 and (5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)).
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))-(2⋅5-4)+213⋅6-8(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Write -(2⋅5-4) as a fraction with denominator 1.
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))+-(2⋅5-4)1+213⋅6-8(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Multiply -(2⋅5-4)1 by (5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)).
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))+-(2⋅5-4)1⋅(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))+213⋅6-8(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Multiply -(2⋅5-4)1 and (5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)).
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))+-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))+213⋅6-8(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))+-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))+213⋅6-8(5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2))
Simplify terms.
Tap for more steps…
Combine fractions with similar denominators.
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+213⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Reduce the expression 213 by cancelling the common factors.
Tap for more steps…
Factor 3 out of 21.
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+3⋅73⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Factor 3 out of 3.
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+3⋅73(1)⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Cancel the common factor.
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+3⋅73⋅1⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Rewrite the expression.
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+71⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+71⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Simplify the expression.
Tap for more steps…
Divide 7 by 1.
2⋅3((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 2 by 3.
6((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 5 by 2.
6((10-4)(15-3⋅4)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply -3 by 4.
6((10-4)(15-12)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Subtract 4 from 10.
6(6(15-12)-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Subtract 12 from 15.
6(6⋅3-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 6 by 3.
6(18-((5+2)⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Add 5 and 2.
6(18-(7⋅3-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 7 by 3.
6(18-(21-(3+2)))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Add 3 and 2.
6(18-(21-1⋅5))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply -1 by 5.
6(18-(21-5))-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Subtract 5 from 21.
6(18-1⋅16)-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply -1 by 16.
6(18-16)-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Subtract 16 from 18.
6⋅2-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 6 by 2.
12-(2⋅5-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 2 by 5.
12-(10-4)((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Subtract 4 from 10.
12-1⋅6((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply -1 by 6.
12-6((5⋅2-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 5 by 2.
12-6((10-4)(15-3⋅4)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply -3 by 4.
12-6((10-4)(15-12)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Subtract 4 from 10.
12-6(6(15-12)-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Subtract 12 from 15.
12-6(6⋅3-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 6 by 3.
12-6(18-((5+2)⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Add 5 and 2.
12-6(18-(7⋅3-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 7 by 3.
12-6(18-(21-(3+2)))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Add 3 and 2.
12-6(18-(21-1⋅5))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply -1 by 5.
12-6(18-(21-5))+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Subtract 5 from 21.
12-6(18-1⋅16)+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply -1 by 16.
12-6(18-16)+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Subtract 16 from 18.
12-6⋅2+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply -6 by 2.
12-12+7⋅6-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 7 by 6.
12-12+42-8(5⋅2-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply 5 by 2.
12-12+42-8(10-4)(15-3⋅4)-(3⋅(5+2)-(3+2))
Multiply -3 by 4.
12-12+42-8(10-4)(15-12)-(3⋅(5+2)-(3+2))
Subtract 4 from 10.
12-12+42-86(15-12)-(3⋅(5+2)-(3+2))
Subtract 12 from 15.
12-12+42-86⋅3-(3⋅(5+2)-(3+2))
Multiply 6 by 3.
12-12+42-818-(3⋅(5+2)-(3+2))
Add 5 and 2.
12-12+42-818-(3⋅7-(3+2))
Multiply 3 by 7.
12-12+42-818-(21-(3+2))
Add 3 and 2.
12-12+42-818-(21-1⋅5)
Multiply -1 by 5.
12-12+42-818-(21-5)
Subtract 5 from 21.
12-12+42-818-1⋅16
Multiply -1 by 16.
12-12+42-818-16
12-12+42-818-16
Reduce the expression 12-12+42-818-16 by cancelling the common factors.
Tap for more steps…
Factor 2 out of 12.
2(6)-12+42-818-16
Factor 2 out of -12.
2⋅6+2⋅-6+42-818-16
Factor 2 out of 2⋅6+2⋅-6.
2⋅(6-6)+42-818-16
Factor 2 out of 42.
2⋅(6-6)+2(21)-818-16
Factor 2 out of -8.
2⋅(6-6)+2⋅21+2⋅-418-16
Factor 2 out of 2⋅21+2⋅-4.
2⋅(6-6)+2⋅(21-4)18-16
Factor 2 out of 2⋅(6-6)+2⋅(21-4).
2⋅(6-6+21-4)18-16
Factor 2 out of 18.
2⋅(6-6+21-4)2(9)-16
Factor 2 out of -16.
2⋅(6-6+21-4)2⋅9+2⋅-8
Factor 2 out of 2⋅9+2⋅-8.
2⋅(6-6+21-4)2⋅(9-8)
Cancel the common factor.
2⋅(6-6+21-4)2⋅(9-8)
Rewrite the expression.
6-6+21-49-8
6-6+21-49-8
6-6+21-49-8
Simplify the numerator.
Tap for more steps…
Subtract 6 from 6.
0+21-49-8
Add 0 and 21.
21-49-8
Subtract 4 from 21.
179-8
179-8
Simplify the expression.
Tap for more steps…
Subtract 8 from 9.
171
Divide 17 by 1.
17
17
Evaluate (2*3-(2*5-4))+((18/3+1)(5*4-7*2)-(3*5-7))/((5*2-4)(15-3*4)-((5+2)*3-(3+2)))

Meet the Team our Math Expers

Our Professionals

Robert Kristofer

Anna Frok

Magnus Flores

Lydia Fran

We are MathExperts

Solve all your Math Problems: https://elanyachtselection.com/

We can solve all your math problems
Scroll to top