# Evaluate (4+34÷17-6)^3+3 (4+34÷17-6)3+3
Simplify each term.
Find the common denominator.
Write 4 as a fraction with denominator 1.
(41+34÷17-6)3+3
Multiply 41 by 1717.
(41⋅1717+34÷17-6)3+3
Multiply 41 and 1717.
(4⋅1717+34÷17-6)3+3
Write -6 as a fraction with denominator 1.
(4⋅1717+34÷17+-61)3+3
Multiply -61 by 1717.
(4⋅1717+34÷17+-61⋅1717)3+3
Multiply -61 and 1717.
(4⋅1717+34÷17+-6⋅1717)3+3
(4⋅1717+34÷17+-6⋅1717)3+3
Combine fractions with similar denominators.
(4⋅17+34-6⋅1717)3+3
Multiply 4 by 17.
(68+34-6⋅1717)3+3
Multiply -6 by 17.
(68+34-10217)3+3
Reduce the expression 68+34-10217 by cancelling the common factors.
Factor 17 out of 68.
(17⋅4+34-10217)3+3
Factor 17 out of 34.
(17⋅4+17⋅2-10217)3+3
Factor 17 out of 17⋅4+17⋅2.
(17⋅(4+2)-10217)3+3
Factor 17 out of -102.
(17⋅(4+2)+17⋅-617)3+3
Factor 17 out of 17⋅(4+2)+17(-6).
(17⋅(4+2-6)17)3+3
Factor 17 out of 17.
(17⋅(4+2-6)17(1))3+3
Cancel the common factor.
(17⋅(4+2-6)17⋅1)3+3
Rewrite the expression.
(4+2-61)3+3
(4+2-61)3+3
Divide 4+2-6 by 1.
(4+2-6)3+3
Add 4 and 2.
(6-6)3+3
Subtract 6 from 6.
03+3
Raising 0 to any positive power yields 0.
0+3
0+3
Add 0 and 3.
3
Evaluate (4+34÷17-6)^3+3

## Our Professionals ### Robert Kristofer ### Anna Frok ### Magnus Flores ### Lydia Fran

#### We are MathExperts

Solve all your Math Problems: https://elanyachtselection.com/

Scroll to top