Find the Variance 64 , -16 , 4 , -1

Math
64 , -16 , 4 , -1
The mean of a set of numbers is the sum divided by the number of terms.
x‾=64-16+4-14
Simplify the numerator.
Tap for more steps…
Subtract 16 from 64.
x‾=48+4-14
Add 48 and 4.
x‾=52-14
Subtract 1 from 52.
x‾=514
x‾=514
Divide.
x‾=12.75
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
x‾=12.8
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=∑i=1n⁡(xi-xavg)2n-1
Set up the formula for variance for this set of numbers.
s=(64-12.8)2+(-16-12.8)2+(4-12.8)2+(-1-12.8)24-1
Simplify the result.
Tap for more steps…
Simplify the numerator.
Tap for more steps…
Subtract 12.8 from 64.
s=51.22+(-16-12.8)2+(4-12.8)2+(-1-12.8)24-1
Raise 51.2 to the power of 2.
s=2621.44+(-16-12.8)2+(4-12.8)2+(-1-12.8)24-1
Subtract 12.8 from -16.
s=2621.44+(-28.8)2+(4-12.8)2+(-1-12.8)24-1
Raise -28.8 to the power of 2.
s=2621.44+829.44+(4-12.8)2+(-1-12.8)24-1
Subtract 12.8 from 4.
s=2621.44+829.44+(-8.8)2+(-1-12.8)24-1
Raise -8.8 to the power of 2.
s=2621.44+829.44+77.44+(-1-12.8)24-1
Subtract 12.8 from -1.
s=2621.44+829.44+77.44+(-13.8)24-1
Raise -13.8 to the power of 2.
s=2621.44+829.44+77.44+190.444-1
Add 2621.44 and 829.44.
s=3450.88+77.44+190.444-1
Add 3450.88 and 77.44.
s=3528.32+190.444-1
Add 3528.32 and 190.44.
s=3718.764-1
s=3718.764-1
Simplify the expression.
Tap for more steps…
Subtract 1 from 4.
s=3718.763
Divide 3718.76 by 3.
s=1239.586‾
s=1239.586‾
s=1239.586‾
Approximate the result.
s2≈1239.5867
Find the Variance 64 , -16 , 4 , -1

Meet the Team our Math Expers

Our Professionals

Robert Kristofer

Anna Frok

Magnus Flores

Lydia Fran

We are MathExperts

Solve all your Math Problems: https://elanyachtselection.com/

We can solve all your math problems
Scroll to top