# Find the Variance 64 , -16 , 4 , -1 64 , -16 , 4 , -1
The mean of a set of numbers is the sum divided by the number of terms.
x&OverBar;=64-16+4-14
Simplify the numerator.
Subtract 16 from 64.
x&OverBar;=48+4-14
Add 48 and 4.
x&OverBar;=52-14
Subtract 1 from 52.
x&OverBar;=514
x&OverBar;=514
Divide.
x&OverBar;=12.75
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
x&OverBar;=12.8
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=∑i=1n⁡(xi-xavg)2n-1
Set up the formula for variance for this set of numbers.
s=(64-12.8)2+(-16-12.8)2+(4-12.8)2+(-1-12.8)24-1
Simplify the result.
Simplify the numerator.
Subtract 12.8 from 64.
s=51.22+(-16-12.8)2+(4-12.8)2+(-1-12.8)24-1
Raise 51.2 to the power of 2.
s=2621.44+(-16-12.8)2+(4-12.8)2+(-1-12.8)24-1
Subtract 12.8 from -16.
s=2621.44+(-28.8)2+(4-12.8)2+(-1-12.8)24-1
Raise -28.8 to the power of 2.
s=2621.44+829.44+(4-12.8)2+(-1-12.8)24-1
Subtract 12.8 from 4.
s=2621.44+829.44+(-8.8)2+(-1-12.8)24-1
Raise -8.8 to the power of 2.
s=2621.44+829.44+77.44+(-1-12.8)24-1
Subtract 12.8 from -1.
s=2621.44+829.44+77.44+(-13.8)24-1
Raise -13.8 to the power of 2.
s=2621.44+829.44+77.44+190.444-1
Add 2621.44 and 829.44.
s=3450.88+77.44+190.444-1
Add 3450.88 and 77.44.
s=3528.32+190.444-1
Add 3528.32 and 190.44.
s=3718.764-1
s=3718.764-1
Simplify the expression.
Subtract 1 from 4.
s=3718.763
Divide 3718.76 by 3.
s=1239.586‾
s=1239.586‾
s=1239.586‾
Approximate the result.
s2≈1239.5867
Find the Variance 64 , -16 , 4 , -1

## Our Professionals ### Robert Kristofer ### Anna Frok ### Magnus Flores ### Lydia Fran

#### We are MathExperts

Solve all your Math Problems: https://elanyachtselection.com/

Scroll to top