Simplify ((b^(-5/2))/(c^(-2/3)))^2(b^(-1/2)c^(-1/3))^-1

Math
(b-52c-23)2(b-12c-13)-1
Move b-52 to the denominator using the negative exponent rule b-n=1bn.
(1c-23b52)2(b-12c-13)-1
Move c-23 to the numerator using the negative exponent rule 1b-n=bn.
(c23b52)2(b-12c-13)-1
Apply the product rule to c23b52.
(c23)2(b52)2(b-12c-13)-1
Multiply the exponents in (c23)2.
Tap for more steps…
Apply the power rule and multiply exponents, (am)n=amn.
c23⋅2(b52)2(b-12c-13)-1
Multiply 23⋅2.
Tap for more steps…
Combine 23 and 2.
c2⋅23(b52)2(b-12c-13)-1
Multiply 2 by 2.
c43(b52)2(b-12c-13)-1
c43(b52)2(b-12c-13)-1
c43(b52)2(b-12c-13)-1
Multiply the exponents in (b52)2.
Tap for more steps…
Apply the power rule and multiply exponents, (am)n=amn.
c43b52⋅2(b-12c-13)-1
Cancel the common factor of 2.
Tap for more steps…
Cancel the common factor.
c43b52⋅2(b-12c-13)-1
Rewrite the expression.
c43b5(b-12c-13)-1
c43b5(b-12c-13)-1
c43b5(b-12c-13)-1
Rewrite the expression using the negative exponent rule b-n=1bn.
c43b5(1b12c-13)-1
Rewrite the expression using the negative exponent rule b-n=1bn.
c43b5(1b12⋅1c13)-1
Multiply 1b12 and 1c13.
c43b5(1b12c13)-1
Change the sign of the exponent by rewriting the base as its reciprocal.
c43b5(b12c13)
Cancel the common factor of b12.
Tap for more steps…
Factor b12 out of b5.
c43b12b92(b12c13)
Factor b12 out of b12c13.
c43b12b92(b12(c13))
Cancel the common factor.
c43b12b92(b12c13)
Rewrite the expression.
c43b92c13
c43b92c13
Combine c43b92 and c13.
c43c13b92
Multiply c43 by c13 by adding the exponents.
Tap for more steps…
Use the power rule aman=am+n to combine exponents.
c43+13b92
Combine the numerators over the common denominator.
c4+13b92
Add 4 and 1.
c53b92
c53b92
Simplify ((b^(-5/2))/(c^(-2/3)))^2(b^(-1/2)c^(-1/3))^-1

Meet the Team our Math Expers

Our Professionals

Robert Kristofer

Anna Frok

Magnus Flores

Lydia Fran

We are MathExperts

Solve all your Math Problems: https://elanyachtselection.com/

We can solve all your math problems
Scroll to top