Simplify square root of (s^2+1)/(s^2+4)

Math
s2+1s2+4
Rewrite s2+1s2+4 as s2+1s2+4.
s2+1s2+4
Multiply s2+1s2+4 by s2+4s2+4.
s2+1s2+4⋅s2+4s2+4
Combine and simplify the denominator.
Tap for more steps…
Multiply s2+1s2+4 and s2+4s2+4.
s2+1s2+4s2+4s2+4
Raise s2+4 to the power of 1.
s2+1s2+4s2+41s2+4
Raise s2+4 to the power of 1.
s2+1s2+4s2+41s2+41
Use the power rule aman=am+n to combine exponents.
s2+1s2+4s2+41+1
Add 1 and 1.
s2+1s2+4s2+42
Rewrite s2+42 as s2+4.
Tap for more steps…
Use axn=axn to rewrite s2+4 as (s2+4)12.
s2+1s2+4((s2+4)12)2
Apply the power rule and multiply exponents, (am)n=amn.
s2+1s2+4(s2+4)12⋅2
Combine 12 and 2.
s2+1s2+4(s2+4)22
Cancel the common factor of 2.
Tap for more steps…
Cancel the common factor.
s2+1s2+4(s2+4)22
Divide 1 by 1.
s2+1s2+4(s2+4)1
s2+1s2+4(s2+4)1
Simplify.
s2+1s2+4s2+4
s2+1s2+4s2+4
s2+1s2+4s2+4
Combine using the product rule for radicals.
(s2+1)(s2+4)s2+4
Simplify square root of (s^2+1)/(s^2+4)

Meet the Team our Math Expers

Our Professionals

Robert Kristofer

Anna Frok

Magnus Flores

Lydia Fran

We are MathExperts

Solve all your Math Problems: https://elanyachtselection.com/

We can solve all your math problems
Scroll to top