Multiply .

Combine and .

Combine and .

Combine and .

Combine and .

Combine and .

Move to the left of .

Rewrite the division as a fraction.

Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.

Since contain both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .

The LCM is the smallest positive number that all of the numbers divide into evenly.

1. List the prime factors of each number.

2. Multiply each factor the greatest number of times it occurs in either number.

The number is not a prime number because it only has one positive factor, which is itself.

Not prime

Since has no factors besides and .

is a prime number

The number is not a prime number because it only has one positive factor, which is itself.

Not prime

The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.

The factor for is itself.

occurs time.

The factor for is itself.

occurs time.

The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either term.

Multiply by .

The LCM for is the numeric part multiplied by the variable part.

Multiply each term in by in order to remove all the denominators from the equation.

Simplify .

Rewrite using the commutative property of multiplication.

Combine and .

Cancel the common factor of .

Factor out of .

Cancel the common factor.

Rewrite the expression.

Raise to the power of .

Raise to the power of .

Use the power rule to combine exponents.

Add and .

Simplify each term.

Rewrite using the commutative property of multiplication.

Cancel the common factor of .

Cancel the common factor.

Rewrite the expression.

Multiply by by adding the exponents.

Move .

Multiply by .

Rewrite using the commutative property of multiplication.

Cancel the common factor of .

Factor out of .

Cancel the common factor.

Rewrite the expression.

Cancel the common factor of .

Factor out of .

Cancel the common factor.

Rewrite the expression.

Raise to the power of .

Raise to the power of .

Use the power rule to combine exponents.

Add and .

Multiply by by adding the exponents.

Move .

Multiply by .

Rewrite using the commutative property of multiplication.

Multiply by .

Since is on the right side of the equation, switch the sides so it is on the left side of the equation.

Subtract from both sides of the equation.

Subtract from both sides of the equation.

Solve for a a/b=4/3*(then^3a)+(2b)÷3a-2b