Solve for a (a+1)(2a-3)=30

Math
(a+1)(2a-3)=30
Simplify (a+1)(2a-3).
Tap for more steps…
Expand (a+1)(2a-3) using the FOIL Method.
Tap for more steps…
Apply the distributive property.
a(2a-3)+1(2a-3)=30
Apply the distributive property.
a(2a)+a⋅-3+1(2a-3)=30
Apply the distributive property.
a(2a)+a⋅-3+1(2a)+1⋅-3=30
a(2a)+a⋅-3+1(2a)+1⋅-3=30
Simplify and combine like terms.
Tap for more steps…
Simplify each term.
Tap for more steps…
Rewrite using the commutative property of multiplication.
2a⋅a+a⋅-3+1(2a)+1⋅-3=30
Multiply a by a by adding the exponents.
Tap for more steps…
Move a.
2(a⋅a)+a⋅-3+1(2a)+1⋅-3=30
Multiply a by a.
2a2+a⋅-3+1(2a)+1⋅-3=30
2a2+a⋅-3+1(2a)+1⋅-3=30
Move -3 to the left of a.
2a2-3⋅a+1(2a)+1⋅-3=30
Multiply 2a by 1.
2a2-3a+2a+1⋅-3=30
Multiply -3 by 1.
2a2-3a+2a-3=30
2a2-3a+2a-3=30
Add -3a and 2a.
2a2-a-3=30
2a2-a-3=30
2a2-a-3=30
Move all terms to the left side of the equation and simplify.
Tap for more steps…
Move 30 to the left side of the equation by subtracting it from both sides.
2a2-a-3-30=0
Subtract 30 from -3.
2a2-a-33=0
2a2-a-33=0
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Substitute the values a=2, b=-1, and c=-33 into the quadratic formula and solve for a.
1±(-1)2-4⋅(2⋅-33)2⋅2
Simplify.
Tap for more steps…
Simplify the numerator.
Tap for more steps…
Raise -1 to the power of 2.
a=1±1-4⋅(2⋅-33)2⋅2
Multiply 2 by -33.
a=1±1-4⋅-662⋅2
Multiply -4 by -66.
a=1±1+2642⋅2
Add 1 and 264.
a=1±2652⋅2
a=1±2652⋅2
Multiply 2 by 2.
a=1±2654
a=1±2654
The final answer is the combination of both solutions.
a=1+2654,1-2654
The result can be shown in multiple forms.
Exact Form:
a=1+2654,1-2654
Decimal Form:
a=4.31970514…,-3.81970514…
Solve for a (a+1)(2a-3)=30

Meet the Team our Math Expers

Our Professionals

Robert Kristofer

Anna Frok

Magnus Flores

Lydia Fran

We are MathExperts

Solve all your Math Problems: https://elanyachtselection.com/

We can solve all your math problems
Scroll to top