Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.

Since contain both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .

The LCM is the smallest positive number that all of the numbers divide into evenly.

1. List the prime factors of each number.

2. Multiply each factor the greatest number of times it occurs in either number.

The number is not a prime number because it only has one positive factor, which is itself.

Not prime

Since has no factors besides and .

is a prime number

The number is not a prime number because it only has one positive factor, which is itself.

Not prime

The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.

The factor for is itself.

occurs time.

The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either term.

The LCM for is the numeric part multiplied by the variable part.

Multiply each term in by in order to remove all the denominators from the equation.

Simplify each term.

Rewrite using the commutative property of multiplication.

Multiply .

Combine and .

Multiply by .

Cancel the common factor of .

Cancel the common factor.

Rewrite the expression.

Cancel the common factor of .

Move the leading negative in into the numerator.

Factor out of .

Cancel the common factor.

Rewrite the expression.

Raise to the power of .

Raise to the power of .

Use the power rule to combine exponents.

Add and .

Multiply .

Multiply by .

Multiply by .

Subtract from both sides of the equation.

Multiply each term in by

Multiply each term in by .

Multiply .

Multiply by .

Multiply by .

Multiply by .

Take the square root of both sides of the equation to eliminate the exponent on the left side.

The complete solution is the result of both the positive and negative portions of the solution.

Simplify the right side of the equation.

Rewrite as .

Pull terms out from under the radical, assuming positive real numbers.

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the to find the first solution.

Next, use the negative value of the to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Solve for k 7/k-k/7=0